

IMPORTANT JEE-NEET FORMULAS

Stoichiometry Formula's

<u>Topics</u>	<u>Formulas</u>
Relative atomic mass	Relative atomic mass (R. A. M) $= \frac{\text{Mass of one atom of an element}}{\frac{1}{12} \times \text{mass of one Carbon atom}}$
	= Total number of nucleons
Density	Specific gravity
	$= \frac{\text{density of the substance}}{\text{density of water at } 4^{0}C}$
For Gases:	Absolute density $\left(\frac{mass}{volume}\right) = \frac{Molar\ mass\ of\ the\ gas}{Molar\ Volume\ of\ the\ gas}$ $=> \rho = \frac{PM}{RT}$ Vapor density $V.\ D = \frac{d_{gas}}{d_{H_2}} = \frac{PM_{gas}}{PM_{H_2}} = \frac{M_{gas}}{M_{H_2}}$ $M_{gas} = 2\ V.\ D$
Molarity(M):	$Molarity(M)$ $= \frac{w \times 1000}{(Mol.wt of Solute) \times V_{in ml}}$
Molality(m):	$Molality = \frac{number\ of\ moles\ of\ solute}{mass\ of\ solvent\ in\ gram} \times 1000 = 1000 \frac{W_1}{M_1 W_2}$
Mole Fraction(x):	Mole Fraction of solution $(x_1) = \frac{n}{n+N}$ Mole fraction of solvent $(x_2) = \frac{N}{n+N}$ $x_1 + x_2 = 1$
% Calculation	$\% \frac{w}{w} = \frac{mass \ of \ solute \ in \ gm}{mass \ of \ solution \ in \ gm} \times 100$ $\% \frac{w}{v} = \frac{Mass \ of \ solute \ in \ gm}{Volume \ of \ solution \ in \ ml} \times 100$

	v Volume of solute in ml
	$\% \frac{v}{v} = \frac{Volume \ of \ solute \ in \ ml}{Volume \ of \ solution} \times 100$
Average/ Mean atomic mass:	$A_x = \frac{a_1 x_1 + a_2 x_2 + \dots + a_n X_n}{100}$
Mean molar mass or molecular Mass	$M_{avg} = \frac{n_1 M_1 + n_2 M_2 + \cdots n_n M_n}{n_1 + n_2 + n_3 + \cdots n_n}$
Normality(N)	Normality(N)
	_ Number of equivalents of solute
	= Volume of Sodium(in liters)
Measurement of Hardness	Hardness in ppm= $\frac{mass\ of\ CaCO_3}{Total\ Mass\ of\ water} \times 10^6$
Molarity in mole Fraction	$x_2 = \frac{MM_1 \times 1000}{\rho \times 1000 - MM_2}$
Mole Fraction into molality	$m = \left(\frac{x_2 \times 1000}{x_1 M_1}\right)$
Molality into mole fraction	$x_2 = \frac{mM_1}{1000 + mM_1}$
Molality into molarity	$M = \frac{m\rho \times 1000}{1000 + mM_2}$
Molarity into Molality	$m = \frac{M \times 1000}{1000\rho - mm_2}$
Angstr	M_1 and M_2 Are molar mass and ρ is the density of solution in (gm/mL).
Y-Map ONLINE	Number Volume at STP Mole
	+ mol. wt. + At. wt. × At. wt.