

IMPORTANT JEE-NEET FORMULAS

Quadratic Equation Formula's

Topics	<u>Formulas</u>
General form of Quadratic Equation	$ax^2 + bx + c = 0;$
	where a, b, c are constants and $a \neq 0$.
Roots of equations	$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{ac}$
	a = 2a
	$\beta = \frac{-b - \sqrt{b^2 - 4dc}}{2a}$
	24
Sum and Product of Roots	If α and β are the roots of the quadratic
	equation $ar^2 + br + c = 0$ then
	Sum of roots $\alpha + \beta = -\frac{b}{2}$
	Broduct of roots $\alpha \beta = \frac{c}{a}$
	a
Discriminant of Quadratic equation	The Discriminant of the quadratic equation
	$ax^2 + bx + c = 0$ is given by $D = b^2 - bx + c = 0$
Nature of Roots	4 <i>ac</i> . If $D = 0$ the roots are real and equal $\alpha =$
Anoth	$\beta = -\frac{b}{2a}$.
ANUSU	24
	If $D \neq 0$, the roots are real and unequal.
ONLINE	If $m{D} < m{0}$, the roots are imaginary and
ONLINE	unequal.
	If $m{D} > m{0}$ and $m{D}$ is a perfect square, the
	roots are rational and unequal.
	If $m{D} > m{0}$ and $m{D}$ is not a perfect square, the
	roots are irrational and unequal.

<u>Common Roots:</u>	If two quadratic equations $a_1x^2 + b_1x + c_1 = 0 \& a_2x^2 + b_2x + c_2 = 0$ have both roots common, then $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$. If only one root α is common, then $\alpha = \frac{c_1a_2-c_2a_1}{a_1b_2-a_2b_1} = \frac{b_1c_2-b_2c_1}{c_1a_2-c_2a_1}$
Range of Quadratic Expression $f(x) =$ $ax^2 + bx + c$ in restricted domain $x \in$ $[x_1, x_2]$:	If $-\frac{b}{2a}$ not belong to $[x_1, x_2]$ then, $f(x) \in [\min\{f(x_1), f(x_2)\}, \max\{f(x_1), f(x_2)\}]$ If $-\frac{b}{2a} \in [x_1, x_2]$ then, $f(x) \in [\min\{f(x_1), f(x_2), -\frac{D}{4a}\}, \max\{f(x_1), f(x_2), -\frac{D}{4a}\}]$
Angstr online	Consider the quadratic equation $ax^2 + bx + c = 0$ If $c = 0$, then one root is zero. Other root is $-\frac{b}{a}$. If $b = 0$, the roots are equal but in opposite sign. If $b = c = 0$, then both roots are zero. If $a = c$, then the roots are reciprocal to each other. If $a + b + c = 0$, then one root is 1 and the second root is $\frac{c}{a}$. If $a = b = c = 0$, then the equation will become an identity and will satisfy every value of x .

Crark of Quadratic equation	The energy of a superior equation $\pi \alpha^2$
Graph of Quadratic equation	The graph of a quadratic equation $ax^2 +$
	bx + c = 0 is a parabola.
	If $a > 0$ then the graph of a quadratic
	$u \neq 0$, then the graph of a quadratic
	equation will be concave upwards.
	If $a < 0$, then the graph of a quadratic
	equation will be concave downwards
	equation will be concave downwards.
Maximum and Minimum value:	Consider the quadratic expression ax^2 +
	bx + c = 0
	If $a < 0$, then the expression has the
	greatest value at $x = -\frac{b}{2}$. The maximum
	2a
	value is $-\frac{-}{4a}$.
	If $a > 0$, then the expression has the least
	value at $x = -\frac{b}{2a}$. The minimum value
	$\frac{D}{10}$
	¹³ 4a
Quadratic Expression in Two Variables	The general form of a quadratic equation in
	two variables x and y is $ax^2 + 2hxy + bxy + bxy$
	$hv^2 + 2ax + 2fv + c$
	To solve the expression into two linear
IANACTP	rational factors, the condition is $\Delta=0$
7174361	a h g
	$\Delta = \begin{vmatrix} h & b & f \end{vmatrix} = 0$
	g f c
ONLINE	CLASS
	$abc+2fgh-af^2-bg^2-ch^2=0$
	And $h^2 - ab > 0$.
	This is called the Discriminant of the given
	expression.