
IMPORTANT JEE-NEET FORMULAS

STRING WAVE

Topics	<u>Formulas</u>
GENERAL EQUATION OF WAVE MOTION	$\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2}$ $y(x,t) = f(t \pm \frac{x}{v})$ Where $y(x,t)$ should be finite everywhere. $f(t + \frac{x}{v})$ Represents wave travelling in negative x-axis. $f(t - \frac{x}{v})$ Represents wave travelling in positive x-axis. $y = A \sin(\omega t \pm kx + \phi)$
TERMS RELATED TO WAVE MOTION (FOR 1-D PROGRESSIVE SINE WAVE)	Wave number (or propagation constant) (k) $k = \frac{2\pi}{\lambda} = \frac{\omega}{v}$
Phase of Wave	The argument of harmonic function ($\omega t \pm kx + \phi$) is called phase of the wave. Phase difference ($\Delta \phi$) : difference in phases of two particles at any time t. $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$ And also, $\Delta \phi = \frac{2\pi}{\lambda} \Delta t$
SPEED OF TRANSVERSE WAVE ALONG A STRING/WIRE	$v = \frac{\sqrt{T}}{\mu}$ here, T = tension μ = mass per unit length
REFLECTION AND REFRACTION OF WAVES	$y_{i} = A_{i} \sin (\omega t - k_{1}x)$ If incident from rarer to denser medium ($v_{2} < v_{1}$) $y_{t} = A_{t} \sin (\omega t - k_{2}x)$ $y_{r} = -A_{r} \sin (\omega t + k_{1}x)$ If incident from denser to rarer medium ($v_{2} > v_{1}$) $y_{t} = A_{t} \sin (\omega t - k_{2}x)$ $y_{r} = A_{r} \sin (\omega t - k_{1}x)$
VIBRATIONS OF STRINGS (STANDING WAVE)	
String fixed at both ends	Fixed ends will be nodes. So, waves for which

Angstromedu