IMPORTANT JEE-NEET FORMULAS

Heat and Thermodynamics

Topics	Formulas
Conduction	Rate of flow of heat in conduction is determined as $\frac{dQ}{dt} = -KA\frac{dT}{dx}$
	K = thermal conductivity A = area of cross-section
	dx = thickness
	dT = temperature difference
Thermal resistance to conduction	Thermal resistance is given as $R = \frac{L}{KA}$ K = material's conductivity L = plane thickness A = plane area
Kirchhoff's Law	Emissive power of body Absorptive power of body
Nature of thermal radiations (Wien's	= Emissive power of black body 1
displacement law) Stefan-Boltzmann's law ONLINE	$\lambda_{max} \propto \overline{T}$ $\lambda_{max} T = b$ $\lambda_{max} = \text{wavelength of peak of blackbody}$ radiation curve $b = 0.282 \text{ cm } K = \text{Wein's constant}$ $T = \text{temperature}$ $u = \sigma A T^4 \text{ (Perfect black body)}$ $u = e\sigma A T^4 \text{ (Not a perfect black body)}$ $here,$ $\sigma = \text{Stefan's constant} = 5.67 \times 10^{-8} \text{ watt } / \frac{m^2 K^4}{\frac{u}{4}} = \text{energy flux}$
	e = emissivity
Newton's law of cooling	$\frac{d\theta}{dt} = (\theta - \theta_0)$ Here, θ and θ_0 = temperature corresponding to object and surroundings.
Temperature scales	$F = 32 + \frac{9}{5} \times C$ $K = C + 273.16$

	F = Fahrenheit scale
	C = Celsius scale
	K = Kelvin scale
Ideal Gas equation	PV = nRT Here,
	n = number of moles
	P = pressure
	V = Volume
	T = Temperature
Van der Waals equation	$(p+a(\frac{n}{V})^2)(V-nb) = nRT$
	$a(\frac{n}{v})^2$ = correction factor for intermolecular
	forces nb = correction factor for molecule size
	n = number of moles
	T = Temperature
	V = Volume
	p = pressure
Thermal expansion	Linear Expansion
	$L = L_0(1 + \alpha \Delta T)$
	Area Expansion
	$A = A_0(1 + \beta \Delta T)$
	Volume Expansion
	$V = V(1 + \gamma \Delta T)$
Relation between α , β and γ for the isotropic solid	$\frac{\alpha}{1} = \frac{\beta}{2} = \frac{\gamma}{3}$

ONLINE CLASS